Lecture 7.

Vapor-Liquid Equilibria

Vapor and Gas

Vapor

A substance that is below its critical temperature.
Gas
A substance that is above its critical temperature (but below the critical pressure).

For the same pressure, a vapor is more easily condensed while a gas is normally non-condensable.

The PT Diagram

Definition of Terms

Vapor Pressure

Pressure of the vapor when the vapor and liquid of a pure component are in equilibrium. Also referred to as saturated pressure.

Saturated Temperature

Temperature at which the vapor and liquid will co-exist at a given pressure. Commonly referred to as the boiling or condensation point.

Dew Point

The temperature when the vapor starts to condense.

Bubble Point

The temperature when the liquid starts to vaporize.

Definition of Terms
Saturated Vapor and Saturated Liquid
Vapor and liquid at the saturated P and saturated T .

Subcooled Liquid

A liquid that is below its saturated T at a given pressure.
Compressed Liquid
A liquid that is above its saturated P at a given temperature.

Superheated Vapor

A vapor that is above its saturated T at a given pressure.

Quality

For a saturated mixture, quality refers to the mass fraction of the vapor in the mixture.

The PT Diagram

The PT Diagram

Saturated and Superheated Steam Tables

Saturated water-Temperature table

Superheated water

$\begin{aligned} & T \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	h $\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	h kJ/kg	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	h kJ / k
	$P=0.01 \mathrm{MPa}\left(45.81^{\circ} \mathrm{C}\right)^{*}$				$P=0.05 \mathrm{MPa}\left(81.32^{\circ} \mathrm{C}\right)$				$P=0.10 \mathrm{MPa}$ (99		
Sat. ${ }^{+}$	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	26.7
50	14.867	2443.3	2592.0	8.1741							
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	267
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	277
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	287
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	297.

Properties of Saturated Mixture

For a saturated mixture,

$$
\begin{aligned}
& \hat{\mathrm{V}}_{1}(1-\mathrm{x})+\hat{\mathrm{V}}_{\mathrm{g}}(\mathrm{x})=\hat{\mathrm{V}}_{\text {mixture }} \\
& \hat{\mathrm{H}}_{1}(1-\mathrm{x})+\hat{\mathrm{H}}_{\mathrm{g}}(\mathrm{x})=\hat{\mathrm{H}}_{\text {mixture }} \\
& \hat{\mathrm{U}}_{1}(1-\mathrm{x})+\hat{\mathrm{U}}_{\mathrm{g}}(\mathrm{x})=\hat{\mathrm{U}}_{\text {mixture }}
\end{aligned}
$$

where $\mathrm{x}=$ mass fraction of vapor in the mixture.

Example 7/8-1. Vapor-Liquid Properties of Water
For each of the conditions of temperature and pressure listed below for water, state whether the water is a solid, liquid, saturated mixture, or superheated vapor. If it is a saturated mixture, calculate the quality.

State	$\mathbf{P}(\mathbf{k P a})$	$\mathbf{T}(\mathbf{K})$	$\mathbf{V}\left(\mathbf{m}^{3} / \mathbf{k g}\right)$
1	2000	475	---
2	1000	500	0.2206
3	101.3	400	---
4	245.6	400	0.505

Example 7-1. Vapor-Liquid Properties of Water
Using the saturated steam table,

State	$\mathbf{P}(\mathbf{k P a})$	$\mathbf{T}(\mathbf{K})$	Phase
1	2000	475	Liquid
2	1000	500	Vapor
3	101.3	400	Vapor
4	245.6	400	Saturated

Example 7-1. Vapor-Liquid Properties of Water

From the saturated steam pressure table,

175	116.04	0.001057	1.0037
200	120.21	0.001061	0.88578
225	123.97	0.001064	0.79329
250	127.41	0.001067	0.71873
275	130.58	0.001070	0.65732

By 2-point linear interpolation, properties at $\mathrm{P}=245.6$ can be estimated:

$$
\hat{\mathrm{V}}_{1}=\ldots \mathrm{m}^{3} / \mathrm{kg} \text { and } \hat{\mathrm{V}}_{\mathrm{g}}=\ldots \mathrm{m}^{3} / \mathrm{kg}
$$

Example 7-1. Vapor-Liquid Properties of Water

If x is the quality of the saturated mixture, then

$$
\left(-\frac{\mathrm{m}^{3}}{\mathrm{~kg}}\right)(1-\mathrm{x})+\left(\square \frac{\mathrm{m}^{3}}{\mathrm{~kg}}\right)(\mathrm{x})=0.505 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

Solving for x ,

$$
x=0.69
$$

Change of Vapor Pressure with Temperature
Many functional forms have been proposed to predict vapor pressure (p^{*}) from temperature. One of these functions is the Antoine equation:

$$
\ln \left(\mathrm{p}^{*}\right)=\mathrm{A}-\frac{\mathrm{B}}{\mathrm{C}+\mathrm{T}}
$$

Where p^{*} = vapor pressure of the substance, mmHg
T = temperature, K
$A, B, C=$ constants for each substance

Change of Vapor Pressure with Temperature
The Clapeyron equation is another function relating vapor pressure p^{*} and temperature T :

$$
\frac{\mathrm{dP}}{} \mathrm{dT}^{*}=\frac{\Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{~T}\left(\hat{\mathrm{~V}}_{\mathrm{g}}-\hat{\mathrm{V}}_{1}\right)}
$$

Where p* = vapor pressure of the substance

$$
\mathrm{T} \quad=\text { temperature }
$$

$\Delta \mathrm{H}_{\mathrm{V}}=$ latent heat of vaporization
$\mathrm{V}_{\mathrm{g}}, \mathrm{V}_{\mathrm{l}}=$ specific molar volumes of vapor and liquid, respectively

Change of Vapor Pressure with Temperature
Simplifications of the Clapeyron equation:

1. Specific molar volume of liquid is very small compared to specific molar volume of the vapor, such that

$$
\left(\hat{\mathrm{V}}_{\mathrm{g}}-\hat{\mathrm{V}}_{1}\right) \approx \hat{\mathrm{V}}_{\mathrm{g}}
$$

2. The vapor is assumed to behave ideally.

$$
\hat{V}_{\mathrm{g}}=\frac{\mathrm{RT}}{\mathrm{P} *}
$$

Change of Vapor Pressure with Temperature
The Clapeyron equation then becomes,

$$
\frac{\mathrm{dP}^{*}}{\mathrm{dT}}=\frac{\mathrm{P}^{*} \Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{RT}^{2}}
$$

Separating the variables and integrating to yield the Clausius-Clapeyron equation,

$$
\begin{aligned}
& \frac{\mathrm{dP}^{*}}{\mathrm{P}^{*}}=\frac{\Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{R}}\left(\frac{\mathrm{dT}}{\mathrm{~T}^{2}}\right) \\
& \ln \left(\mathrm{P}^{*}\right)=-\frac{\Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{RT}}+\mathrm{B}
\end{aligned}
$$

Example 7-2. Estimation of Normal BP Using the Antoine Equation
Determine the \% error if the Antoine equation is used to estimate the normal boiling point of benzene. From literature value, the normal boiling point of benzene is 353.26 K.

Solution:
For benzene, values of the constants for the Antoine equation are:

$$
\begin{aligned}
& A=15.9008 \\
& B=2788.51 \\
& C=-52.36
\end{aligned}
$$

Example 7-2. Estimation of Normal BP Using the Antoine Equation
Using the Antoine equation,

$$
\ln (760 \mathrm{mmHg})=15.9008-\frac{2788.51}{-52.36+\mathrm{T}}
$$

Solving for temperature, $\quad \mathbf{T}=353.3 \mathbf{K}$
The percent error is,

$$
\% \text { error }=\frac{|353.26 \mathrm{~K}-353.3 \mathrm{~K}|}{353.26 \mathrm{~K}} \times 100 \simeq 0.01 \%
$$

Example 7-3. Clausius-Clapeyron Equation

The vapor pressure of benzene is measured at two temperatures, with the following results:

$$
\begin{array}{ll}
\mathrm{T}_{1}=7.6^{0} \mathrm{C} & \mathbf{P} *_{1}=40 \mathrm{~mm} \mathrm{Hg} \\
\mathrm{~T}_{2}=15.4^{0} \mathrm{C} & \mathbf{P}_{2}=60 \mathrm{~mm} \mathrm{Hg}
\end{array}
$$

Calculate the latent heat of vaporization and the parameter B in the Clausius-Clapeyron equation and then estimate P^{*} at $42.2^{\circ} \mathrm{C}$ using this equation.

Example 7-3. Clausius-Clapeyron Equation

The Clausius-Clapeyron is a linear equation with:

$$
\begin{array}{ll}
\mathrm{x}=\frac{1}{\mathrm{~T}} & \mathrm{y}=\ln \left(\mathrm{P}^{*}\right) \\
\mathrm{m}=-\frac{\Delta \hat{\mathrm{H}}_{V}}{\mathrm{R}} & \mathrm{~b}=\mathrm{B}
\end{array}
$$

Solving for slope, m:

$$
\mathrm{m}=-\frac{\Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{R}}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\ln \left(\mathrm{P} *_{2}\right)-\ln \left(\mathrm{P} *_{1}\right)}{\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)}=\frac{\mathrm{T}_{1} \mathrm{~T}_{2} \ln \left(\mathrm{P} *_{2} / \mathrm{P} *_{1}\right)}{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}
$$

Example 7-3. Clausius-Clapeyron Equation

Using absolute values for temperature:

$$
T_{1}=280.8 \mathrm{~K} \text { and } T_{2}=288.6 \mathrm{~K}
$$

The slope is computed as:

$$
\begin{aligned}
& \mathrm{m}=-\frac{\Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{R}}=\frac{(280.8 \mathrm{~K})(288.6 \mathrm{~K}) \ln \left(\frac{60 \mathrm{mmHg}}{40 \mathrm{mmHg}}\right)}{(280.8 \mathrm{~K}-288.6 \mathrm{~K})} \\
& \mathrm{m}=-\frac{\Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{R}}=-4213 \mathrm{~K}
\end{aligned}
$$

Example 7-3. Clausius-Clapeyron Equation

And the latent heat of vaporization is:

$$
\Delta \hat{\mathrm{H}}_{\mathrm{V}}=4213 \mathrm{~K}(\mathrm{R})=4213 \mathrm{~K}\left(8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)=35,030 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The intercept $b(b=B)$ can be determined as follows:

$$
\begin{aligned}
& \mathrm{B}=\ln \left(\mathrm{P} *_{1}\right)+\frac{\Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{RT}_{1}}=\ln \left(\mathrm{P} *_{2}\right)+\frac{\Delta \hat{\mathrm{H}}_{\mathrm{V}}}{\mathrm{RT}_{2}} \\
& \mathrm{~B}=\ln (40)+\left(\frac{4213}{280.8}\right)=18.69
\end{aligned}
$$

Example 7-3. Clausius-Clapeyron Equation

The Clausius-Clapeyron equation for benzene can now be written as:

$$
\ln \left(\mathrm{P}^{*}\right)=-\frac{4213}{\mathrm{~T}}+18.69
$$

At $\mathrm{T}=42.2^{\circ} \mathrm{C}=315.4 \mathrm{~K}$, the vapor pressure of benzene is

$$
\begin{aligned}
& \ln \left(\mathrm{P}^{*}\right)=-\frac{4213}{315.4}+18.69=5.334 \\
& \mathrm{P}^{*}=\exp (5.334)=207 \mathrm{mmHg}
\end{aligned}
$$

Vapor-Liquid Equilibrium for Multi-component Systems
Consider a binary mixture with components A and B.

Note: X, Y = mole fractions of the component in the vapor and liquid phases, respectively.

Vapor-Liquid Equilibrium for Multi-component Systems
For multi-component systems,

$$
\mathbf{P}_{\mathrm{i}}=f\left(\mathbf{x}_{\mathrm{i}}\right)
$$

This functional relationship is given by

1. Raoult's Law - generally used when x_{i} is close to 1 .
2. Henry's Law - generally used when x_{i} is close to 0 .

Vapor-Liquid Equilibrium for Multi-component Systems
Henry's Law:

$$
\mathbf{P}_{\mathrm{i}}=\mathbf{x}_{\mathrm{i}} \mathbf{H}_{\mathbf{i}}
$$

where $P_{i}=$ partial pressure of component i in the vapor phase.
$=y_{i} \mathrm{P}_{\mathrm{T}}$ (if the vapor behaves ideally)
$\mathrm{x}_{i}=$ mole fraction of component i in the liquid phase.
$\mathrm{H}_{\mathrm{i}}=$ Henry's law constant

Vapor-Liquid Equilibrium for Multi-component Systems
Raoult's Law:

$$
\mathbf{P}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}} \mathbf{P}_{\mathbf{i}}^{*}
$$

where $\mathrm{P}_{\mathrm{i}}=$ partial pressure of component i in the vapor phase.
$=y_{i} \mathrm{P}_{\mathrm{T}}$ (if the vapor behaves ideally)
$\mathrm{x}_{i}=$ mole fraction of component i in the liquid phase.
$\mathrm{P}_{\mathrm{T}}=$ total pressure

Vapor-Liquid Equilibrium for Multi-component Systems
If the vapor behaves ideally, the Raoult's law becomes

$$
\mathbf{y}_{\mathbf{i}} \mathbf{P}_{\mathrm{T}}=\mathbf{x}_{\mathbf{i}} \mathbf{P}^{*}{ }_{\mathbf{i}}
$$

Rearranging the equation,

$$
\frac{\mathbf{y}_{\mathbf{i}}}{\mathbf{x}_{\mathbf{i}}}=\frac{\mathbf{P}_{\mathbf{i}}}{\mathbf{P}_{\mathbf{T}}}=\mathbf{K}_{\mathbf{i}}
$$

where K_{i} is the V-L equilibrium constant.

Example 7-4. Vapor-Liquid Equilibrium Calculation

Suppose that a liquid mixture of 4.0% n-hexane (A) in n-octane (\mathbf{B}) is vaporized. What is the composition of the first vapor formed if the total pressure is 1.00 atm ?

Values of the Antoine constants for n -octane are:

$$
\begin{aligned}
A & =15.9798 \\
B & =3127.60 \\
C & =-63.63
\end{aligned}
$$

Example 7-4. Vapor-Liquid Equilibrium Calculation

Solution:

Assuming the vapor behaves ideally, the composition of the vapor is determined using the Raoult's law:

$$
\begin{aligned}
& \mathbf{y}_{\mathbf{A}}=\frac{\mathbf{P}^{*} \mathbf{A}_{\mathbf{A}}}{\mathbf{P}_{\mathrm{T}}} \mathbf{x}_{\mathrm{A}} \\
& \mathbf{y}_{\mathbf{B}}=\frac{\mathbf{P}^{*}{ }^{\mathbf{B}}}{\mathbf{P}_{\mathbf{T}}} \mathbf{x}_{\mathbf{B}}
\end{aligned}
$$

Example 7-4. Vapor-Liquid Equilibrium Calculation

Upon formation of the first vapor, the composition of the liquid is essentially the same as the initial composition.

Hence,

$$
x_{A}=0.040 \text { and } x_{B}=1-x_{A}=0.960
$$

The vapor pressures of A and B are calculated using the Antoine equation:

$$
\ln \left(\mathrm{P}^{*}\right)=\mathrm{A}-\frac{\mathrm{B}}{\mathrm{C}+\mathrm{T}}
$$

Example 7-4. Vapor-Liquid Equilibrium Calculation

For n-hexane:

$$
\mathrm{P} *_{\mathrm{A}}=\exp \left(15.8366-\frac{2697.55}{-48.78+\mathrm{T}}\right)
$$

For n-octane:

$$
\mathrm{P} *_{\mathrm{B}}=\exp \left(15.9798-\frac{3127.60}{-63.63+\mathrm{T}}\right)
$$

Since vaporization temperature is not given, the next step in the calculation is to determine its value.

Example 7-4. Vapor-Liquid Equilibrium Calculation

For the vapor mixture,

$$
\mathbf{P}_{\mathrm{T}}=\mathbf{P}_{\mathrm{A}}+\mathbf{P}_{\mathrm{B}}
$$

Using Raoult’s Law,

$$
\mathbf{P}_{\mathrm{T}}=\mathbf{P} *_{A} \mathbf{x}_{\mathrm{A}}+\mathbf{P} *_{\mathrm{B}} \mathbf{x}_{\mathrm{B}}=1.00 \mathrm{~atm}=760 \mathrm{mmHg}
$$

Using the expressions for the vapor pressures as defined by the Antoine equation

$$
\mathrm{e}^{\left(15.8366-\frac{2697.55}{-48.78+\mathrm{T}}\right)}(0.040)+\mathrm{e}^{\left(15.9798-\frac{3127.60}{-63.63+\mathrm{T}}\right)}(0.960)=760
$$

Example 7-4. Vapor-Liquid Equilibrium Calculation

The last equation is a non-linear equation. To find the value of T, Newton's method is used by defining $f(T)$ as:

$$
f(T)=0.040 \mathrm{e}^{\left(15.8366-\frac{2697.55}{-48.78+\mathrm{T}}\right)}+0.960 \mathrm{e}^{\left(15.9798-\frac{3127.60}{-63.63+\mathrm{T}}\right)}-760=0
$$

Similar to example 6-4, the temperature value that will satisfy this equation is determined using the following iteration formula:

$$
\mathrm{T}_{\mathrm{k}+1}=\mathrm{T}_{\mathrm{k}}-\frac{\mathrm{f}\left(\mathrm{~T}_{\mathrm{k}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{T}_{\mathrm{k}}\right)}
$$

Example 7-4. Vapor-Liquid Equilibrium Calculation

Differentiating $f(T)$:

$$
\mathrm{f}^{\prime}(\mathrm{T})=\frac{107.902 \mathrm{e}^{\left(15.8366-\frac{2697.55}{-48.78+\mathrm{T}}\right)}}{(\mathrm{T}-48.78)^{2}}+\frac{3002.496 \mathrm{e}^{\left(15.9798-\frac{3127.60}{-63.63+\mathrm{T}}\right)}}{(\mathrm{T}-63.63)^{2}}
$$

Any value for the temperature may be used as initial guess. For this example, the following initial guess is used:

$$
T_{0}=1000 \mathrm{~K}
$$

Example 7-4. Vapor-Liquid Equilibrium Calculation

Step	$\mathbf{T}_{\mathbf{K}}(\mathbf{K})$	$\mathbf{f (T)}$	$\mathbf{f}^{\prime}(\mathbf{T})$	$\mathbf{T}_{\mathrm{K}+1}(\mathrm{~K})$	E
0	1000.0	313163.50	1109.32	717.70	282.301
1	717.70	74657.88	544.43	580.57	137.13
2	580.57	20838.65	248.65	496.76	83.81
3	496.76	6084.77	111.72	442.30	54.46
4	442.30	1721.87	52.72	409.64	32.66
5	409.64	403.40	29.46	395.95	13.69
6	395.95	51.14	22.21	393.65	2.30
7	393.65	1.24	21.12	393.59	0.06

Example 7-4. Vapor-Liquid Equilibrium Calculation

For $T=393.59 \mathrm{~K}$, the vapor pressures of n -hexane and n-octane are:

$$
\begin{gathered}
\mathrm{P} *_{\mathrm{A}}=3019.92 \mathrm{~mm} \mathrm{Hg} \\
\mathrm{P} *_{\mathrm{B}}=665.86 \mathrm{~mm} \mathrm{Hg}
\end{gathered}
$$

And the composition of the first vapor formed is:

$$
\begin{aligned}
& \mathbf{y}_{\mathbf{A}}=\frac{3019.92}{760}(0.040)=0.159 \\
& \mathbf{y}_{\mathbf{B}}=\frac{665.68}{760}(0.960)=0.841
\end{aligned}
$$

Vapor-Liquid Equilibrium for Multi-component Systems
Consider a mixture of a vapor (A) and a non-condensable gas (B).

Vapor-Liquid Equilibrium for Multi-component Systems

(Terms and symbols in parenthesis refer specifically to air-water system.)
Relative Saturation (Relative Humidity)

$$
\mathrm{s}_{\mathrm{r}}\left(\mathrm{~h}_{\mathrm{r}}\right)=\frac{\mathrm{P}_{\mathrm{V}}}{\mathrm{P}{ }_{\mathrm{V}}} \times 100
$$

Absolute Saturation (Absolute Humidity)

$$
\mathrm{s}_{\mathrm{a}}\left(\mathrm{~h}_{\mathrm{a}}\right)=\frac{\text { mass of vapor }}{\text { massof vapor-free gas }}=\frac{\mathrm{P}_{\mathrm{V}} \mathrm{MW}_{\mathrm{V}}}{\left(\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{V}}\right) \mathrm{MW}_{\mathrm{G}}}
$$

Molal Saturation (Molal Humidity)

$$
\mathrm{s}_{\mathrm{m}}\left(\mathrm{~h}_{\mathrm{m}}\right)=\frac{\text { moles of vapor }}{\text { molesof vapor-free gas }}=\frac{\mathrm{P}_{\mathrm{V}}}{\left(\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{V}}\right)}
$$

Example 7-5. Humidity of Air
Humid air at $75^{\circ} \mathrm{C}, 1.1$ bar, and 30% relative humidity is fed into a process unit at a rate of $1000 \mathrm{~m}^{3} / \mathrm{h}$. Determine:
a. the molar flow rates of water, dry air, and oxygen entering the process unit.
b. the molal humidity and absolute humidity.
c. the dew point.

Assume ideal gas behavior.

Example 7-5. Humidity of Air
Solution for (a):
Determine the mole fraction of water:

$$
\mathbf{y}_{\mathbf{H} 2 \mathrm{O}}=\frac{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{P}_{\mathrm{T}}}
$$

The partial pressure of water is calculated from relative humidity:

$$
\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\left(\frac{\mathrm{~h}_{\mathrm{r}}}{100}\right)
$$

Example 7-5. Humidity of Air
At $\mathrm{T}=75^{\circ} \mathrm{C}$,

$$
\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=289 \mathrm{~mm} \mathrm{Hg}
$$

And the partial pressure of water is,

$$
\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=(289 \mathrm{~mm} \mathrm{Hg})(0.3)=86.7 \mathrm{~mm} \mathrm{Hg}
$$

For a total pressure of $1.1 \mathrm{bar}=825 \mathrm{~mm} \mathrm{Hg}$, the mole fraction of water is,

$$
\mathrm{y}_{\mathrm{H} 2 \mathrm{O}}=\frac{86.7 \mathrm{~mm} \mathrm{Hg}}{825 \mathrm{~mm} \mathrm{Hg}}=0.105 \frac{\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{molHA}}
$$

Example 7-5. Humidity of Air
Determine the molar flow rate of humid air:

$$
\overrightarrow{\mathrm{n}_{\mathrm{A}}}=\frac{\mathrm{P} \overrightarrow{\mathrm{~V}}}{\mathrm{RT}}=\frac{(1.1 \mathrm{bar})\left(1000 \mathrm{~m}^{3} / \mathrm{h}\right)}{\left(0.0831 \frac{\mathrm{~m}^{3} \cdot \mathrm{bar}}{\mathrm{kmol} \cdot \mathrm{~K}}\right)(75+273 \mathrm{~K})}=38.0 \frac{\mathrm{kmol}}{\mathrm{~h}}
$$

The molar flow rate of water can now be obtained:

$$
\overrightarrow{\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}}=\left(38.0 \frac{\mathrm{kmolHA}}{\mathrm{~h}}\right)\left(\frac{0.105 \mathrm{kmolH}_{2} \mathrm{O}}{\mathrm{kmolHA}}\right)=3.99 \frac{\mathrm{kmol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{~h}}
$$

Example 7-5. Humidity of Air
The molar flow rate of dry air:

$$
\overrightarrow{\mathrm{n}_{\mathrm{DA}}}=\left(38.0 \frac{\mathrm{kmol}}{\mathrm{~h}}\right)\left(\frac{(1-0.105) \mathrm{kmolDA}}{\mathrm{kmolHA}}\right)=34.0 \frac{\mathrm{kmolDA}}{\mathrm{~h}}
$$

The molar flow rate of O_{2} :

$$
\overrightarrow{\mathrm{n}_{\mathrm{O} 2}}=\left(34.0 \frac{\mathrm{kmolDA}}{\mathrm{~h}}\right)\left(\frac{0.21 \mathrm{kmolO}_{2}}{\mathrm{kmolDA}}\right)=7.14 \frac{\mathrm{kmolO}_{2}}{\mathrm{~h}}
$$

Example 7-5. Humidity of Air
Solution for (b):
The absolute humidity $\left(\mathrm{h}_{\mathrm{a}}\right)$:

$$
\mathrm{h}_{\mathrm{a}}=\frac{\mathrm{P}_{\mathrm{H} 2 \mathrm{O}} \mathrm{MW}_{\mathrm{H} 2 \mathrm{O}}}{\left(\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right) \mathrm{MW}_{\mathrm{DA}}}=\frac{(86.7)(18)}{(825-86.7)(29)}=0.0726 \frac{\mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}{\mathrm{~kg} \mathrm{DA}}
$$

The molal humidity $\left(\mathrm{h}_{\mathrm{m}}\right)$:

$$
\mathrm{h}_{\mathrm{m}}=\frac{\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}}{\left(\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right)}=\frac{86.7}{(825-86.7)}=0.117 \frac{\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{molDA}}
$$

Example 7-5. Humidity of Air
Solution for (c):
At the dew point,

$$
\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=86.7 \mathrm{mmHg}
$$

From vapor pressure data for water, this vapor pressure of water occurs at:

$$
\mathrm{T}=48.7^{\circ} \mathrm{C}
$$

This is the dew point since at this temperature, water will start to condense.

Prof. Manolito E Bambase Jr. Department of Chemical Engineering. University of the Philippines Los Baños

