Calculation of Enthalpy Changes

Manolito E. Bambase Jr
Assistant Professor, Department of Chemical Engineering
CEAT, University of the Philippines, Los Banos, Laguna, Philippines
As shown previously, the change in enthalpy can be calculated using the heat capacity C_P.

\[\Delta H = \int C_P dT \]

To give the heat capacity some physical meaning, C_P represents the amount of energy required to increase the temperature of a given amount of substance by 1 degree.

Common units for C_P:

- kJ/kmol \cdot K
- Btu/lbmol \cdot °F
Heat Capacities of Ideal Gases

<table>
<thead>
<tr>
<th>Type of Molecule</th>
<th>High Temperature</th>
<th>Low Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoatomic</td>
<td>$\frac{5R}{2}$</td>
<td>$\frac{5R}{2}$</td>
</tr>
<tr>
<td>Polyatomic, linear</td>
<td>$(3n - \frac{3}{2})R$</td>
<td>$\frac{7R}{2}$</td>
</tr>
<tr>
<td>Polyatomic, nonlinear</td>
<td>$(3n - 2)R$</td>
<td>$4R$</td>
</tr>
</tbody>
</table>

$n =$ number of atoms per molecule ; $R =$ ideal gas constant ; $C_V = C_P - R$
For gas mixtures, the C_P of the mixture is the mole weighted average of the heat capacities of the components:

$$(C_P)_{avg} = \sum_{i=1}^{N} x_i C_{Pi}$$

If C_P is not constant for the given temperature range, it may be expressed as a function of temperature in a power series such as:

$$C_P = \alpha + \beta T + \gamma T^2$$

where α, β, and γ are constants specific to a particular substance (Appendix E.1, Basic Principles and Calculations in Chemical Engineering, 6th edition, by David M. Himmelblau)
Example 14–1. Calculation of \(\Delta H \) for a Gas Mixture

An economic feasibility study indicates that solid municipal waste can be burned to a gas of the following composition (on a dry basis):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(_2)</td>
<td>9.2%</td>
</tr>
<tr>
<td>CO</td>
<td>1.5%</td>
</tr>
<tr>
<td>O(_2)</td>
<td>7.3%</td>
</tr>
<tr>
<td>N(_2)</td>
<td>82.0%</td>
</tr>
</tbody>
</table>

What is the enthalpy difference for this gas per lbmol between the bottom and the top of the stack if the temperature at the bottom of the stack is 550\(^0\)F and the temperature at the top is 200\(^0\)F.
The heat capacity equations for the gases are:
[T in 0F; C_p in Btu/(lbmol)(0F)]

N_2: $C_p = 6.895 + 0.7624 \times 10^{-3}T - 0.7009 \times 10^{-7}T^2$

O_2: $C_p = 7.104 + 0.7851 \times 10^{-3}T - 0.5528 \times 10^{-7}T^2$

CO: $C_p = 6.865 + 0.8024 \times 10^{-3}T - 0.7367 \times 10^{-7}T^2$

CO_2: $C_p = 8.448 + 5.757 \times 10^{-3}T - 21.59 \times 10^{-7}T^2$
$+ 3.059 \times 10^{-10}T^3$
Example 14–1. Calculation of ΔH for a Gas Mixture

Basis: 1.00 lbmol of gas mixture

The enthalpy difference (ΔH) is calculated as:

$$\Delta H = \int C_P dT$$

The C_P of the gas mixture is determined from the equation:

$$\left(C_P \right)_{\text{avg}} = \sum_{i=1}^{N} x_i C_{P_i}$$

$$\left(C_P \right)_{\text{avg}} = x_{N2} C_{P_{N2}} + x_{O2} C_{P_{O2}} + x_{CO2} C_{P_{CO2}} + x_{CO} C_{P_{CO}}$$
Example 14–1. Calculation of ΔH for a Gas Mixture

$$x_{N_2}C_{P_{N_2}} = (0.82)(6.895 +)$$

$$x_{O_2}C_{P_{O_2}} = (0.073)(7.104 +)$$

$$x_{CO_2}C_{P_{CO_2}} = (0.092)(8.448 +)$$

$$x_{CO}C_{P_{CO}} = (0.015)(6.865 +)$$

Obtaining $\Sigma x_i C_{P_i}$:

$$\left(C_p \right)_{avg} = 7.053 + 1.2242 \times 10^{-3}T - 2.6124 \times 10^{-7}T^2$$

$$+ 0.2814 \times 10^{-10}T^3$$
Solving for ΔH:

$$
\Delta H = \int_{550}^{200} \left(7.053 + 1.2242 \times 10^{-3} T - 2.6124 \times 10^{-7} T^2
- 0.2814 \times 10^{-10} T^3 \right) \, dT
$$

$$
\Delta H = 7.053 (200 - 550) + \frac{1.2242 \times 10^{-3}}{2} (200^2 - 550^2)
- \frac{2.6124 \times 10^{-7}}{3} (200^3 - 550^3) + \frac{0.2814 \times 10^{-10}}{4} (200^4 - 550^4)
$$

$$
\Delta H = -2616 \text{ Btu} / \text{lbmol}
$$
Enthalpies at various temperatures can also be obtained from tables.

From Basic Principles and Calculations in Chemical Engineering by David M. Himmelblau (6th edition):

Table D.2 Enthalpies of Paraffinic Hydrocarbons ($C_1 - C_6$)

Table D.3 Enthalpies of Other Hydrocarbons (ethylene, propylene, butene, acetylene, benzene)

Table D.4 Enthalpies of Nitrogen and Some of its Oxides

Table D.5 Enthalpies of Sulfur Compounds

Table D.6 Enthalpies of Combustion Gases
The enthalpy from a standard reference state is given by

\[
H = H_f^\circ + \int_{T_R}^{T} C_P \, dT
\]

where \(H_f^\circ \) is the standard heat of formation and \(T_R \) is the reference temperature.

For a mixture,

\[
H_{\text{mixture}} = \sum_{i=1}^{N} \left(H_f^\circ + \int_{T_R}^{T} C_P \, dT \right)
\]
The standard heat of formation (ΔH_f°) is the special enthalpy for the formation of 1 mole of a compound from its constituents elements, for example

$$C(s) + 0.5O_2(g) \rightarrow CO(g)$$

The reactants and products must be at 25°C and 1 atm.

The reaction may not represent a real reaction. By definition, the heat of formation for the elements is zero in the standard state.

From *Basic Principles and Calculations in Chemical Engineering* by David M. Himmelblau (6th edition):

Table F.1 Heats of Formation and Combustion
Consider an open system with no chemical reaction:

\[
\Delta H = H_{\text{out}} - H_{\text{in}} = (H_{A2} + H_{B2}) - (H_{A1} + H_{B1})
\]
14.3 Enthalpy Calculations from Standard Heat of Formation

Calculating the enthalpies from standard heat of formation

$$\Delta H = \left[\left(H_{fA}^\circ + \int_{T_R}^{T_2} C_{PA} \, dT \right) + \left(H_{fB}^\circ + \int_{T_R}^{T_2} C_{PB} \, dT \right) \right]$$

$$- \left[\left(H_{fA}^\circ + \int_{T_R}^{T_1} C_{PA} \, dT \right) + \left(H_{fB}^\circ + \int_{T_R}^{T_1} C_{PB} \, dT \right) \right]$$

Simplifying,

$$\Delta H = \int_{T_1}^{T_2} C_{PA} \, dT + \int_{T_1}^{T_2} C_{PB} \, dT$$
Consider an open system with chemical reaction:

\[A + B \rightarrow C + D \]

Input, \(T_1 \)

A: \(H_A \)
B: \(H_B \)

Open System

Output, \(T_2 \)

C: \(H_C \)
D: \(H_D \)

The enthalpy difference between inlet and outlet will be

\[\Delta H = H_{out} - H_{in} = (H_C + H_D) - (H_A + H_B) \]
Calculating the enthalpies from standard heat of formation

\[
\Delta H = \left[\left(H_f^{\circ} + \int_{T_R}^{T_2} C_{PC} dT \right) + \left(H_f^{\circ} + \int_{T_R}^{T_2} C_{PD} dT \right) \right] \\
- \left[\left(H_f^{\circ} + \int_{T_R}^{T_1} C_{PA} dT \right) + \left(H_f^{\circ} + \int_{T_R}^{T_1} C_{PB} dT \right) \right]
\]

Rearranging the terms,

\[
\Delta H = \left[\left(H_f^{\circ} + H_f^{\circ} \right) - \left(H_f^{\circ} + H_f^{\circ} \right) \right] + \int_{T_R}^{T_2} C_{PC} dT \\
+ \int_{T_R}^{T_2} C_{PD} dT - \int_{T_R}^{T_1} C_{PA} dT - \int_{T_R}^{T_1} C_{PB} dT
\]
The group of terms involving the standard heats of formation is called the standard heat of reaction, ΔH^o_R.

In general,

$$\Delta H^o_R = \sum_{products} \left(nH^o_f \right) - \sum_{reactants} \left(nH^o_f \right)$$

The n in the equation is the stoichiometric coefficient of species i in the chemical reaction.

The standard heat of reaction is the difference between the heats of formation of the products and that of the reactants.
Example 14-2. Calculation of Standard Heat of Reaction

Calculate ΔH°_R for the following reaction:

$$4 \text{NH}_3(g) + 5 \text{O}_2(g) \implies 4 \text{NO}(g) + 6 \text{H}_2\text{O}(g)$$

The standard heats of formation of the products and reactants are:

- NH_3: -46.191 kJ/mol
- NO: $+90.374$ kJ/mol
- O_2: 0
- H_2O: -241.826 kJ/mol

And the standard heat of reaction:

$$\Delta H^\circ_R = [4(90.374) + 6(-241.826)] - [4(-46.191) + 5(0)]$$

$$\Delta H^\circ_R = -904.696 \text{ kJ}/4 \text{ mol NH}_3$$