Energy Balances on Non-Reactive Process

Manolito E. Bambase Jr
Assistant Professor, Department of Chemical Engineering
CEAT, University of the Philippines, Los Banos, Laguna, Philippines
15.1 Energy Balance on a Closed System

\[\Delta E = Q - W \]
\[\Delta K + \Delta P + \Delta U = Q - W \]
\[\Delta (mv^2/2) + \Delta (mgh) + \Delta U = Q - W \]
\[m/2\Delta v^2 + mg\Delta h + \Delta U = Q - W \]
15.2 Energy Balance on an Open System

$$\Delta E = Q - W$$

$$E_2 - E_1 = Q - W$$

If there are multiple inlets and outlets,

$$\Sigma E_2 - \Sigma E_1 = Q - W$$
The work appearing in the equation is the combined flow work and shaft work:

\[W = W_F + W_S \]

- \(W_F \): flow work; work that is necessary to get mass into and out of the system.
- \(W_S \): shaft work; work produced or required beside getting mass into and out of the system.

Hence,

\[\Sigma E_2 - \Sigma E_1 = Q - (W_F + W_S) \]
The net flow work is determined as

\[W_F = (W_F)_2 - (W_F)_1 \]

The flow work is usually expressed in terms of pressure and volume:

\[W_F = (PV)_2 - (PV)_1 \]

For multiple inlets and outlets,

\[W_F = \Sigma(PV)_2 - \Sigma(PV)_1 \]
The energy balance becomes

\[\Sigma E_2 - \Sigma E_1 = Q - [(\Sigma (PV)_2 - \Sigma (PV)_1) + W_S] \]

Since \(E = K + P + U \), then

\[\Sigma (K + P + U)_2 - \Sigma (K + P + U)_1 = Q - [(\Sigma (PV)_2 - \Sigma (PV)_1) + W_S] \]

Rearranging the terms,

\[\Sigma (K + P + U + PV)_2 - \Sigma (K + P + U + PV)_1 = Q - W_S \]
\[\Sigma (K + P + H)_2 - \Sigma (K + P + H)_1 = Q - W_S \]
Example 15-1. Compression of an Ideal Gas in a Cylinder

A cylinder with a movable piston contains 4.00 liters of a gas at 30° C and 5.00 bar. The piston is slowly moved to compress the gas to 8.00 bar.

(a) If the compression is carried out isothermally, and the work done on the gas equals 7.65 L-bar, how much heat (in joules) is transferred to or from (state which) the surroundings.

(b) Suppose instead that the process is adiabatic, what will happen to the temperature of the gas.
Example 15-1. Compression of an Ideal Gas in a Cylinder

(a) Isothermal Compression

\[W = -7.65 \text{ L-bar} \]

This is a closed system and the energy balance is

\[\Delta K + \Delta P + \Delta U = Q - W \]

Since the system is stationary, \(\Delta K = \Delta P = 0 \)
Since the process is isothermal, \(\Delta T = 0 \) and \(\Delta U = 0 \)
The energy balance is simplified to

\[0 = Q - W \]

Solving for \(Q \):

\[Q = W = -7.65 \text{ L} \cdot \text{bar} \left(\frac{8.314 \text{ J}}{0.08314 \text{ L} \cdot \text{bar}} \right) = -765 \text{ J} \]

(b) Adiabatic Compression

The energy balance reduces to \(\Delta U = -W = -(-765 \text{ J}) = 765 \text{ J} \)

Since \(\Delta U \) is positive, \(\Delta T \) must also be positive. Hence, the temperature of the gas will increase.
A piston-fitted cylinder with a 6-cm inner diameter contains 1.40 g of nitrogen. The mass of the piston is 4.50 kg, and a 20-kg weigh rests on the piston. The gas temperature is \(30^0\text{C}\) and the pressure outside the cylinder is 1.00 atm.

(a) Calculate the pressure and volume of the gas inside the cylinder if the piston-weight is at equilibrium.

(b) Suppose the 20-kg weigh is abruptly lifted and the piston rises to a new equilibrium position in which the gas returns to \(30^0\text{C}\). Calculate the work done by the gas.
(a) Pressure of the gas inside the cylinder

If the piston-weight is at equilibrium, then

\[F_U = F_D \]

Calculate \(F_D \):

\[F_D = P_{\text{ext}} A_{\text{piston}} + W_{\text{piston}} + W_{20-\text{kg}} \]

The cross-sectional area of the piston is

\[A_{\text{piston}} = \pi r^2 = \pi (3 \text{ cm})^2 \left(\frac{1 \text{ m}}{100 \text{ cm}} \right)^2 = 2.83 \times 10^{-3} \text{ m}^2 \]
Example 15-2. Nitrogen Gas in a Piston-Fitted Cylinder

The force due to external pressure:

\[F_{\text{ext}} = P_{\text{ext}} A_{\text{piston}} = 1.00 \text{ atm} \left(\frac{101325 \text{ N} / \text{m}^2}{1.00 \text{ atm}} \right) \left(2.83 \times 10^{-3} \text{ m}^2 \right) \]

\[F_{\text{ext}} = 287 \text{ N} \]

The force due to piston and 20-kg mass:

\[F_P = (4.50 \text{ kg} + 20.00 \text{ kg})(9.81 \text{ m/s}^2) = 240 \text{ N} \]

The total downward force is

\[F_D = (240 + 287) \text{ N} = 527 \text{ N} = F_U \]
Example 15-2. Nitrogen Gas in a Piston-Fitted Cylinder

\[P_{\text{gas}} = \frac{F_U}{A_{\text{piston}}} = \frac{527 \text{ N}}{(2.87 \times 10^{-3} \text{ m}^2)} = 1.86 \times 10^5 \text{ N/m}^2 \]

Assuming the gas is ideal:

\[V = \frac{nRT}{P} = \frac{mRT}{(MW)(P)} = 0.677 \text{ L} \]

(b) Work done by the gas when 20-kg mass is removed

Upon removal of the 20-kg mass, the downward force is reduced to:

\[F_D = 287 \text{ N} + (4.50 \text{ kg})(9.81 \text{ m/s}^2) = 331 \text{ N} \]
If the piston must attain a new equilibrium position, then

\[F_D = F_U = 331 \text{ N} \]

The final pressure of the gas:

\[P_2 = \frac{F_U}{A_{\text{piston}}} = \frac{331 \text{ N}}{(2.87 \times 10^{-3} \text{ m}^2)} = 1.16 \times 10^5 \text{ N/m}^2 \]

And the new volume of the gas is:

\[V_2 = V_1 \left(\frac{P_1}{P_2} \right) = 0.677 \text{ L} \left(\frac{1.86 \times 10^5}{1.16 \times 10^5} \right) = 1.08 \text{ L} \]

Change in volume: \(\Delta V = V_2 - V_1 = (1.08 - 0.677)\text{ L} = 0.403 \text{ L} \)
The change in volume can also be determined as:

\[\Delta V = A_{\text{piston}} \Delta x \]

Therefore, the displacement \(\Delta x \) can be computed as:

\[\Delta x = \frac{\Delta V}{A_{\text{piston}}} = 0.142 \text{ m} \]

Computing for work:

\[W = F \Delta x = (331 \text{ N})(0.142 \text{ m}) = +47 \text{ J} \]

Since \(\Delta K = \Delta P = \Delta U = 0 \), this work must be accompanied by heat transfer to the gas equal to +47 J.
Methane enters a 3-cm ID pipe at 30°C and 10 bar with an average velocity of 5.00 m/s and emerges at a point 200 m lower than the inlet at 30°C and 9 bar.

Calculate the ΔK and ΔP assuming the methane behaves as an ideal gas.

Solution:

Mass flow must be the same at the inlet to attain steady-state condition.

$$\Delta K = \frac{m}{2}(v_2^2 - v_1^2) \text{ and } \Delta P = mg(h_2 - h_1)$$
Example 15-3. Methane Flowing in a Pipe

Determine the mass flow:

Volumetric flow at the inlet = $v_1 A$

If methane behaves as an ideal gas:

$$V = v_1 A = \frac{mRT}{(MW)(P)}$$

Solving for mass flow:

$$m = \frac{(v_1 A)(MW)(P_1)}{RT_1} = 0.0225 \text{ kg / s}$$
Example 15-3. Methane Flowing in a Pipe

Solving for ΔP:

$$\Delta P = mg(h_2 - h_1) = \left(0.0225 \frac{\text{kg}}{\text{s}} \right) \left(9.81 \frac{\text{m}}{\text{s}^2} \right) (-200 \text{ m})$$

$$\Delta P = -44.1\frac{\text{J}}{\text{s}} = -44 \text{ W}$$

Determine v_2:

$$P_1 V_1 = P_2 V_2$$

$$P_1(v_1A) = P_2(v_2A)$$
Solving for \(v_2 \):

\[
v_2 = v_1 \left(\frac{P_1}{P_2} \right) = 5.00 \frac{m}{s} \left(\frac{10 \text{ bar}}{9 \text{ bar}} \right) = 5.555 \text{ m/s}
\]

Solving for \(\Delta K \):

\[
\Delta K = \frac{m}{2} \left(v_2^2 - v_1^2 \right) = \frac{1}{2} \left(0.0225 \frac{\text{kg}}{s} \right) \left(5.555^2 - 5.00^2 \frac{m^2}{s^2} \right)
\]

\[
\Delta K = 0.0659 \frac{J}{s} = 0.0659 \text{ W}
\]
Example 15-4. Heating of Water in Boiler Tubes

A fuel oil is burned with air in a boiler furnace. The combustion produces 813 kW of heat of which 65% is transferred as heat to boiler that pass through the furnace. Water enters the boiler tubes as a saturated liquid at 200°C and leaves the tubes as saturated steam at 20 bar absolute.

Calculate the mass flow rate (in kg/h) and volumetric flow rate (in m³/h) at which the saturated steam is produced.
Example 15-4. Heating of Water in Boiler Tubes

Using the energy balance for an open system,

$$\Sigma(K + P + H)_2 - \Sigma(K + P + H)_1 = Q - W_S$$

Assuming $\Delta K = \Delta P = W = 0$, then

$$\Sigma H_2 - \Sigma H_1 = Q = 0.65 \times 813 \text{ kW} = 528 \text{ kW}$$
Example 15-4. Heating of Water in Boiler Tubes

In terms of specific enthalpy, \hat{H} (kJ/kg)

$$m_2\hat{H}_2 - m_1\hat{H}_1 = 528 \text{ kW}$$

where $m =$ mass flow rate of water

If the process is under steady-state condition, then $m_1 = m_2 = m$

Hence,

$$m(\hat{H}_2 - \hat{H}_1) = 528 \text{ kW}$$

Solving for m:

$$m = \frac{528 \text{ kW}}{\hat{H}_2 - \hat{H}_1}$$
From saturated steam table,

\[\hat{H}_1 = 83.9 \text{ kJ/kg and } \hat{H}_2 = 2797.2 \text{ kJ/kg} \]

And the mass flow rate is:

\[
m = \frac{528 \text{ kJ/s}}{(2797.2 - 83.9) \text{ kJ/kg}} \left(\frac{3600 \text{s}}{1 \text{h}} \right) = 701 \text{ kg/h}
\]

Calculating for the volume flow rate:

\[
V = m\dot{\nu} = 701 \text{ kg/h} \left(0.0995 \text{ m}^3/\text{kg} \right) = 69.7 \text{ m}^3/\text{h}
\]

from steam table
Example 15-5. Mixing and Heating of Propane-Butane Mixtures

Three hundred L/h of 20 mole% C₃H₈-80% n-C₄H₁₀ gas mixture at 0°C and 1.1 atm and 200 L/h of a 40 mole% C₃H₈-60% n-C₄H₁₀ gas mixture at 25°C and 1.1 atm are mixed and heated to 227°C at constant pressure. Calculate the heat requirement of the process. Enthalpies of propane and n-butane are listed below. Assume ideal gas behaviour.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Propane (\hat{H}) (J/mol)</th>
<th>Butane (\hat{H}) (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1772</td>
<td>2394</td>
</tr>
<tr>
<td>227</td>
<td>20,685</td>
<td>27,442</td>
</tr>
</tbody>
</table>
Example 15-5. Mixing and Heating of Propane-Butane Mixtures

n₁ (mol/h)
20% C₃H₈
80% C₄H₁₀
0°C, 1.1 atm, 300 L/h

Heating at Constant Pressure

Mixture 3
A (mol C₃H₈/h)
B (mol C₄H₁₀/h)
227°C

n₂ (mol/h)
40% C₃H₈
60% C₄H₁₀
25°C, 1.1 atm, 200 L/h
Example 15-5. Mixing and Heating of Propane-Butane Mixtures

Simplified energy balance for open system:

\[Q = \Sigma H_{\text{out}} - \Sigma H_{\text{in}} \]

\[Q = (H_{P3} + H_{B3}) - (H_{P2} + H_{B2} + H_{P1} + H_{B1}) \]

Since mixture 1 is at 0°C, then

\[Q = (H_{P3} + H_{B3}) - (H_{P2} + H_{B2}) \]

The total enthalpy of each component is determined as:

\[H_{P3} = A\hat{H}_{P3} \]
\[H_{B3} = B\hat{H}_{B3} \]
\[H_{P2} = 0.40n_2\hat{H}_{P2} \]
\[H_{B2} = 0.60n_2\hat{H}_{B3} \]
Find \(n_1, n_2, A, \) and \(B \)

\(n_1 \) and \(n_2 \) can be obtained from \(V_1 \) and \(V_2 \) using the ideal gas equation:

\[
n_1 = 14.7 \text{ mol/h} \quad ; \quad n_2 = 9.00 \text{ mol/h}
\]

\(A \) and \(B \) can be obtained using material balances for propane and butane:

Propane: \(A = 0.20n_1 + 0.40n_2 = 6.54 \text{ mol C}_3\text{H}_8/\text{h} \)

Butane: \(B = 0.80n_1 + 0.60n_2 = 17.16 \text{ mol C}_4\text{H}_{10}/\text{h} \)
Example 15-5. Mixing and Heating of Propane-Butane Mixtures

Solving for the total enthalpies of the components:

\[H_{P3} = (6.54 \text{ mol/h})(20.865 \text{ kJ/mol}) = 136.5 \text{ kJ/h} \]
\[H_{B3} = (17.16 \text{ mol/h})(27.442 \text{ kJ/mol}) = 470.9 \text{ kJ/h} \]
\[H_{P2} = 0.40(9.00 \text{ mol/h})(1.772 \text{ kJ/mol}) = 6.38 \text{ kJ/h} \]
\[H_{B2} = 0.60(9.00 \text{ mol/h})(2.394 \text{ kJ/mol}) = 12.93 \text{ kJ/h} \]

Solving for the heat requirement of the process:

\[Q = (136.5 + 470.9 - 6.38 - 12.93) \text{ kJ/h} \]
\[Q = 587 \text{ kJ/h} \]